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Abstract

In this paper, we investigate the relationship between lumpy in-
ventory adjustment and aggregate fluctuations. We present a gen-
eral equilibrium model composed of many firms interacting in the
input–output network. Each firm follows a threshold-type inventory
policy that generates a lumpy production pattern. First, we provide
a tractable method to compute the competitive equilibrium when
the network structure is symmetric and all firms are homogeneous.
The branching process is employed to estimate the key statistics
of complex adjustment process, and we derive the stationary dis-
tribution in the long-run equilibrium. Second, we prove that the
aggregate fluctuations almost surely converge to zero and the law of
large numbers is satisfied in our framework. We also show that the
probability distribution function of impulse response decays expo-
nentially if the labor share is positive. We conclude that the positive
labor share reduces the high inventory fluctuations and moderates
the business cycle.
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1 Introduction

Business cycles have always been an important issue in economics. Innumerable
studies have tried to explain how and why the economy fluctuates over time.
The various theories are roughly divided into two types on the basis of whether
or not microeconomic characteristics affect the aggregate economic activities.
Mainstream theories emphasize the importance of macroeconomic shocks such
as monetary and fiscal policy shocks, which affect all sectors simultaneously and
trigger aggregate fluctuations. New theories, however, suggest the existence of
channels that play an amplifying role in the propagation of micro-level shocks
behind the economy-wide fluctuations.
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In the macroeconomic literature, leading theories have paid less attention to
the role of micro-level shocks. Lucas (1977) argues that independent micro-level
shocks would average out as the number of units approaches infinity. Lucas’s
argument, which supports the mainstream view, is a direct application of the law
of large numbers to economics. According to this view, macroeconomic shocks
are more important than micro shocks for the aggregate fluctuations. On the
other hand, recent researchers tend not to think that macro shocks can offer a
full explanation of all the fluctuations. The new view, which has been attracting
much attention in the recent years, emphasizes the effects of interactions between
micro units, especially input–output linkages. Indeed, in the economy composed
of many independent units, a shock affecting a single unit might have little
impact on the aggregate level. However, micro shocks to individual units are
unlikely to be independent. If the micro units are linked, a positive shock to one
unit produces a positive response among other units through this linkage. Then,
small shocks are amplified and propagated in the economy through linkages to
cause significant aggregate fluctuations. In this situation, the sum of these small
shocks may fail to produce the kind of cancellation required by Lucas’s argument.

Bak et al. (1993) is one of earlier studies following the new view, where
the inventory adjustment has been considered to play an important role behind
the business cycle. They focus on the fact that non-convex adjustment costs
make inventory adjustment lumpy at the micro-level. They employ the threshold
inventory policy through the so-called “(S, s) rule” and assume that the firms
connect through a hierarchical network with a certain amount of inventories.
The lumpy inventory adjustment generates micro-level perturbation, and the
existence of production linkages provides a possible amplification mechanism.

Bak et al. (1993) describe the large aggregate fluctuation as critical phe-
nomena; we refer to this line of approaches as criticality hypothesis. Critical
phenomena are emergent properties associated with critical points at which the
correlation length diverges to infinity. At the critical point, aggregate quantities
follow power laws, whose properties include scale invariance and the lack of a
well-defined average value. Then, micro-level shocks fail to cancel out at the
aggregate level, and hence, large economic fluctuations can occur even without
macro-level shocks. Their model displays self-organized criticality, and the ef-
fects of small perturbations from independent inventory adjustment fail to cancel
out. The large fluctuations in aggregate productions follow a power law distri-
bution. Nirei (2006) proposes a more general model along this line, where many
individuals follow (S, s) rules and aggregate fluctuations arise from interaction
with a positive feedback.

The importance of multi-sectoral linkage has also been explored in the real
business cycle literature, both theoretically and empirically, after Long and
Plosser (1983). More recently, Acemoglu et al. (2012) propose the network
hypothesis, which is receiving considerable attention. They interpret the input–
output structure as a weighted network, where the nodes correspond to the
industries and the links to the input–output trade flows. They focus on the
inequality across firms or sectors in terms of importance in an input–output net-
work. They also derive conditions about the structure of networks to deliver
low convergence rates. One of the necessary conditions is that the number of
customer links follows a power law distribution with a tail exponent lower than
2. They also provide some empirical evidence that idiosyncratic shocks to the
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top 100 firms explain a large fraction of aggregate volatility in the United States.
Recent literature has also pointed out that the heterogeneity of firm sizes is

important to understand the business cycle. Gabaix (2011) propose the granular
hypothesis of economic fluctuations based on the fact that the distribution of
firm sizes typically follows the power law. When large firms have a large share of
the economy, aggregate fluctuations may arise from idiosyncratic shocks to these
firms. The power law distribution makes the law of large numbers break down,
and idiosyncratic shocks to large firms affect aggregate outputs.

All of these hypotheses relate to power law. Hence, in a broad sense, the large
fluctuations arise because of critical phenomena in all cases. However, specifi-
cally, we interpret the criticality hypothesis to be mutually exclusive with the
other two hypotheses. The criticality hypothesis claims that the power law dis-
tributions of aggregate quantities can be generated only by the system criticality,
without any network or granular effect. From this viewpoint, Bak et al. (1993)
provide an interesting perspective on inventory adjustment process as the source
of large aggregate fluctuations. The essential point of their model is that the sys-
tem criticality solely arises from the combination of lumpy inventory adjustment
and local interaction through input–output linkage. In a multi-sector economy
with linkage, this implies that the lumpiness attributed to non-convexity can be
the source of large aggregate fluctuations by itself, even in the absence of network
asymmetry or granularity of firms.

Although Bak et al.’s (1993) argument is very attractive, their results rely
on the specific structure of network and production technologies. The conditions
for the emergence of criticality also seem rather unique. In addition to that, the
model generates wider fluctuations than those observed in reality.

The purpose of this paper is twofold. Firstly, we propose a multi-sector
general equilibrium model with a non-convex cost environment as an extension
of Bak et al. (1993). Then, we provide a tractable method to compute the
competitive equilibrium. Along the lines of Acemoglu et al. (2012), we consider
a static version of Long and Plosser (1983) but modify the model for it to contain
(S, s) inventory policies that generate lumpy inventory adjustments. Owing to
the complexity of the propagation mechanism through linkage, it is hard to
follow the details of the micro-level lumpy adjustment process in a large economy.
Instead, we employ the stochastic approach to estimate the macro-level statistics
of the inventory adjustment process. Secondly, we assess the relevance of the
criticality hypothesis for the study of inventory fluctuations in comparison with
the other two hypotheses. We verify whether the law of large numbers applies to
the model with non-convex costs, and we examine the behavior of the response
to the uncorrelated micro-level shocks and how quickly their impact on aggregate
volatility decays in the equilibrium. For the purpose of comparison, we get rid
of the asymmetry of network structure and the heterogeneity across firms. The
non-convex cost environment is the only difference between our model and the
ordinary multi-sector model.

The rest of the paper is organized as follows. The next section presents a
structural model with inventory adjustment and explicit production linkages. We
define the competitive equilibrium and derive the aggregate relation. In section
3, we construct the representation of inventory adjustment process and provide a
tractable method to estimate the key statistics. In section 4, we prove the main
theorems of this study. Section 5 concludes the paper.
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2 Model

2.1 Environment

2.1.1 Firms

There are a large number of firms producing differentiated goods indexed by
j ∈ {1, 2, · · · , n}. The produced goods of any given firm are not only purchased
by consumers but also used by other firms as inputs (intermediate goods) for
their own production. Each firm produces its final goods through labor and the
intermediate goods purchased from other firms. The technology that produces
the final goods xj is given by the Cobb–Douglas function:

xj = l
(1−γj)
j

n∏
i=1

x
aij
ij , (1)

where lj and xij denote the amount of labor hired by firm j and intermediate
goods i used in the production of good j. Constant returns to scale is assumed
to hold and is simply expressed by

γj =
n∑

i=1

aij (2)

for all j ∈ {1, 2, · · · , n}.
We assume perfectly competitive markets and price-taking firms. The firm’s

has two problems: a cost minimization problem and a profit maximization prob-
lem. At first, we consider a firm that chooses to minimize cost subject to pro-
ducing xj . The optimal input use problem is given by

c(xj) = min
{lj ,xij}

wlj +
n∑

j=1

pixij

 ,

subject to (1) and (2). From first order conditions, cost shares of labor input
and intermediate inputs are obtained, respectively, as

wlj = (1− γj)(pjxj) , (3)

pixij = aij(pjxj) . (4)

The assumption of constant returns to scale leads us to the linear cost functions,

c(xj) = pjxj (5)

for all j, where pj is (constant) marginal cost to produce xj . If there are no
quantity discounts and the costs of holding inventories, then each firm has no
incentive to store the inventory and the production takes place at the same time
that the order is received.

2.1.2 Inventory Policy

Now, we introduce a substantial fixed cost to conduct production. For example,
it could be the cost to activate the manufacturing device, or the cost for material
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transportation, and so on. In this case, the cost function is non-convex, that is,

ψ(xj) =

{
ψj + pjxj if xj > 0
0 if xj = 0

, (6)

where ψj is the fixed cost to produce xj units of goods. Notice that all costs are
incurred only when xj is positive.

This type of non-convex cost function leads to the so-called “(S, s) policy”
of inventory behavior. The striking features of the (S, s) policy are the fixed
lot size and the lumpy pattern of productions. In the (S, s) policy, the firm
constantly monitors inventories and chooses a lower level, s, below which it does
not let inventories fall, and an upper level, S. Inventories are allowed to vary
between two target levels, S and s. When inventory stocks reach s, the firm
immediately produces to increase its inventory stocks to S. The quantity (S−s)
is referred to as the optimal lot size, allowing the firms to separate the timing
of orders and productions. If the fixed cost is relatively large, the firm produces
infrequently and the optimal lot size would be large. It is well known that the
(S, s) inventory policy is effective in variety situations where non-convex costs
exist. Arrow, Harris, and Marschak (1951) introduce the first mathematical
formulation of the (S, s) policy, and Scarf (1960) provide a general proof of its
optimality.

We suppose that each firm follows its (Sj , sj) policy and has its own lot
size (Sj − sj) associated with (6). The profit maximization generates a state-
dependent behavior based on the inventory level at the beginning of a period:

Qj =

{
Sj − sj > 1 if hj ≤ sj
0 otherwise

(7)

where hj denotes the inventory level for firm j.
We refer to the firm as unstable if its inventory stocks fall to its lower level or

below, that is, hj ≤ sj . Similarly, we refer to the firm as stable if sj < hj ≤ Sj .
The non-negative vector h = (h1, · · · , hn) represents a configuration of inventory
stock levels. A stable configuration is the one where all firms are stable. The set
of all stable configurations are denoted as below.

S =
{
(h1, · · · , hn) ∈ Zn

+ | sj < hj ≤ Sj , ∀j ∈ {1, · · · , n}
}
.

Because all (Sj , sj) are time-invariant, the stable set S is also time-invariant.
The total output of firm j takes a discrete value,

xj = mjQj , mj ∈ N = {0, 1, 2, · · · } (8)

wheremj is the number of productions conducted by j. The non-negative integer
vector m = (m1, · · · ,mn) ∈ Zn

≥0 summarizes the number of productions.
Let l∗j denote the amount of labor used to produce the optimal lot size (Sj −

sj). The labor income from one lot size is given by wl∗j = (1−γj)[pj(Sj−sj)−ψj ].
Henceforth, we suppose that the fixed cost ψj is relatively small enough to be
ignored at the aggregate level. Then, let us consider

Y ≡ w

n∑
j=1

l∗jmj =

n∑
j=1

(1− γj)pj(Sj − sj)mj (9)
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as an aggregate income and aggregate output.
In a sufficiently large economy, the aggregate income Y can be regarded as

a stochastic variable. Each firm produces a large amount of goods at a time so
that the production pattern becomes lumpy and fluctuates more than external
demands. This lumpiness and the fluctuations propagate through the network of
intermediate inputs. Any firm needs to produce some units of output from other
firms. Once a production takes place, it must reduce the inventory levels of other
goods. They may generate inventory stock-out of other firms and trigger other
productions. The chain of productions may occur and continue until all firms’
inventory levels are recovered. The total number of productions is sensitively
dependent on the state of initial inventory configuration. It is possible to create
a big chain of productions when there exists a big cluster of low-level inventory
stocks in the initial state.

2.1.3 Consumer

The representative consumer has Cobb–Douglas preferences over n distinct goods,

u(c1, c2, · · · , cn) = Θn

n∏
i=1

cθii , (10)

where ci is the consumption of good i and Θn is a normalization constant dis-
cussed below. The preference weights {θi} become known before making a deci-
sion, and are given by

θi =
1

n
exp(εi) , (11)

where {εi} are bounded by −∞ < ε ≤ εi ≤ ε <∞. We suppose
∑

i exp(εi) = n.
The representative consumer is endowed with one unit of labor, which is

supplied inelastically. She supplies 1/n units of labor to the firm j and receives
labor income wmj/n from firm j in proportion to the number of its productions.
The total labor income is Y = (w/n)

∑n
j=1mj . The representative consumer is

also considered to be a price taker, and maximizes her utility (10) by choosing a
consumption bundle (c1, c2, · · · , cn) subject to her budget constraint,

n∑
i=1

pici = E[Y ] (12)

where E[Y ] is the expectation of aggregate income. The first-order necessary
conditions imply that consumer expenditures on individual goods are propor-
tional to their respective preference weights:

pici
θi

=
pjcj
θj

, ∀i, j ∈ {1, 2, · · · , n} .

Substituting this into the consumer budget constraint (12), we have demand
functions for goods,

pici = θiE[Y ] (13)

for all i ∈ {1, 2, · · · , n}.
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The indirect utility function is obtained by substituting demand functions
into the utility function:

U = Θn

n∏
i=1

(
θiE[Y ]

pi

)θi

= ΘnE[Y ]

n∏
i=1

(
θi
pi

)θi

.

By setting the utility shift parameter as Θn ≡
∏n

i=1 (θi)
−θi , the ideal price index

is given by

P ≡
n∏

i=1

pθii . (14)

Then, it turns out that real planned aggregate expenditure,

y∗ ≡ E[Y ]/P (15)

provides the welfare criteria and we refer to this as an effective demand.

2.2 Network and Assumptions

The structure of the input–output network can be represented by a weighted,
directed graph G = (V,E,A). In the graph G, each vertex, vj , corresponds to
the firm j in this economy so that the vertex set is V = {1, 2, · · · , n}. A directed
edge (or arc) (i, j) ∈ E is an ordered pair of vertices, and the weight aij ≥ 0
assigned to its directed edge represents an input flow from vertex i to vertex
j. The non-negative matrix An ∈ Rn×n

≥0 with entry aij is a weighted adjacency
matrix of the graph G. As we shall see later, under Cobb–Douglas technologies
and competitive factor markets, aij also corresponds to the entries of input–
output tables, measuring the value of spending on input i per value of produced
good j. The entry takes a positive value, aij > 0, if the share of firm i’s output
in firm j’s production is positive, and aij = 0 otherwise. By definition of the
model, self-loops (j, j) ∈ E could be allowed whenever ajj > 0.

We also introduce the notions of in-degree and out-degree to weighted di-
graphs. In a weighted digraph G, the in-degree of vj refers to the number of
weighted arcs incident to (i.e., directed towards) vj . Similarly, the out-degree of
vj refers to the number of weighted arcs incident from (i.e., directed away from)
vj . The cost-shares γj for firm j coincide with its in-degree.

We have already made suitable specializations of labor supply and produc-
tion technologies. These assumptions are widely acceptable and make our model
exactly similar to that of Acemoglu et al. (2012). Now, we impose other as-
sumptions on the network structure. In order to verify the criticality hypothesis
to hold without network effect or granular effect, we get rid of the asymmetry of
the network structure and the heterogeneity of firms.

Assumption 2.1. We assume the following:

(i) The cost shares of labor are equal for all firms: γj = γ.

(ii) All input sizes are equal to one if it is used in production:

xij =

{
1 if (i, j) ∈ E,
0 otherwise.
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(iii) The optimal inventory policies are homogeneous, and identical lot sizes take
positive integer value: (S − s) ∈ Z≥0.

Assumptions 2.1 (i) (ii) are also imposed by Acemoglu et al. (2012). Assump-
tion 2.1 (i), which means in-degree equivalence, can be regard as a condition for
uniform rate of profit. This would be natural when the economy is in the long-
run equilibrium. Assumption 2.1 (ii) is additionally imposed to make the model
more tractable. In addition to these assumptions, we make 2.1 (iii), that is, the
homogeneity of inventory policies. Assumption 2.1 states that firms are homo-
geneous in all ways except through the input–output structure. The structure of
the input–output network has no inequality without network formation between
firms.

Under Assumption 2.1, each price and the price index are given by p =
w/(1 − γ)(S − s)n and P ≡

∏n
i=1 p

θi
i = p. The real total income and the real

total output are expressed by

yn ≡ Yn
P

=
w

np

n∑
j=1

mj = (1− γ)(S − s)
n∑

j=1

mj , (16)

which we refer to as an actual output.

2.3 Competitive Equilibrium

In this section, we define the competitive equilibrium with inventory and derive
the equilibrium quantities under Assumption 2.1. The competitive equilibrium
is defined as follows.

Definition 2.1. A competitive equilibrium consists of prices (p1, p2, · · · , pn),
wage w, consumption bundle (c1, c2, · · · , cn) and quantities (lj , xj , (xij)) such
that

(i) {ci}ni=1 solves the utility maximization problem of a representative consumer,
taking {pi}ni=1 and w as given.

(ii) {xij}ni=1 and lj solve the profit maximization problem of firm j for all j ∈
{1, 2, · · · , n}; taking {pj}nj=1 and w as given.

(iii) labor and commodity markets are clear, that is,

n∑
i=1

li = 1 , (17)

xi =

n∑
j=1

xij + ci + (hi − h̄i), (i = 1, 2, · · · , n) (18)

where h̄i denotes initial inventories for firm i.

(iv) All firms are stable in terms of inventory level, that is,

h = (h1, h2, · · · , hn) ∈ S . (19)
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Notice that Definition 2.1 (iv) implies the terminal condition for inventory
adjustment process. If there are any firms out of inventory, then the productions
must take place to recover their stock levels according to the (S, s) policies.
Those productions vary inventory configuration and may cause subsequent stock-
outs, so that the existence of stock-outs is inconsistent with equilibrium. This
additional condition for competitive equilibrium gives a distinction between the
model and the ordinary multi-sector model.

We express the general equilibrium by a closed system of equations. Multi-
plying both sides of the market clearing condition (18) for good i by its price pi,
and plugging in demand function (13) and factor demand function (4) for good
i, we obtain

pixi =

n∑
j=1

aij(pjxj) + θiE[Y ] + pi(hi − h̄i) .

Let xj = (Sj − sj)mj denote the amount of products for j, and we have the
following closed system of equations,
1− a11 −a12 · · · −a1n
−a21 1− a22 · · · −a2n
...

...
−an1 −an2 · · · 1− ann



p1(S1 − s1)m1

p2(S2 − s2)m2
...

pn(Sn − sn)mn

 = E[Y ]


θ1
θ2
...
θn

+


p1(h1 − h̄1)
p1(h2 − h̄2)

...
p1(hn − h̄n)

 .

Hereafter, we suppose the assumption 2.1. Summing up the rows of the
closed system and dividing both sides by the price index P = p, we obtain the
aggregate relation in the competitive equilibrium as follows:

yn = y∗ +

n∑
i=1

(hi − h̄i). (20)

Equation (20) shows the ex-post identity. The left-hand side is the actual output
given by (16) and the first term of the right-hand side denotes the effective
demands given by (15). IF the second term, the unplanned inventory investment,
is zero, then the actual output is equal to aggregate demands. Therefore, the
aggregate fluctuations in this model have the same meaning as the unplanned
inventory fluctuations.

We consider an economy in which there are a large number of homogeneous
firms that face a given demand distribution. All firms select the same S and
s points. However, during any particular period, each firm inherits a different
initial inventory stock, h̄j , and receives a different order, not only as final goods
cj but also as intermediate goods xij . The distribution of the initial inventory
holdings results in a little difference in the micro-economic state.

In order to solve equilibrium quantities, we need to know the vector m =
(m1,m2, · · · ,mn) as a function of underlying parameters An = [aij ] and h̄ =
(h1, · · · , hn), when the demand shares take a certain vector θ = (θ1, · · · , θn). If it
were the linear model, we could obtain the solution by inverse matrix [ I−A ]−1 =
I + A + A2 + · · · , which is called the matrix multiplier. However, this method,
owing to the complexity of lumpiness of adjustment, cannot be applied to the
model where the adjustment process is governed by (S, s)-type inventory policies.
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3 Inventory Adjustment Process

3.1 Operator and Dynamics

In counting m, we need to pay attention to the action of individual productions.
Whether or not a firm produces goods depends on the level of inventory. Recall
that the firms are divided into two types on the basis of the inventory: stable
firms and unstable firms. Each production takes place only by an unstable firm.
A stable firm never produce goods at that moment. All firms monitor their own
inventory levels to avoid stock-outs at each period and want to maintain the
stability of their inventory level. When a firm becomes unstable, the production
takes place immediately to restore to its target level. In producing goods, the
firm needs certain units of goods from other firms. A single production conducted
by firm j increases its inventory level by (S− s), while it decreases the inventory
level at all associated firms by (S − s)aij . This inter-dependency of inputs is
captured by the matrix [In −An].

Here, we define the production operator ϕj , which describes the action of
inventory adjustment caused by single production of firm j.

Definition 3.1. The production operator is a mapping ϕj : Zn
+ → Zn

+, that is,

ϕj(h) =

{
h+ (S − s) [ In −An ] ej (hjt < sj)

h (sj ≤ hjt)
(21)

where ej = (0, · · · , 1, · · · , 0) is the unit vector in the direction of the j-axis in a
Cartesian coordinate system.

Although the operator ϕj is expressed in terms of the Leontief matrix [In −
An], ϕj is not linear itself. The operator ϕj consists of two cases. If the firm
j is unstable, then mapping ϕj means the addition of the j-th column of (S −
s)[In − An] to the given inventory configuration h. If the firm j is stable, then
ϕj is ineffective. In the former case, we say that the operator ϕj is effective, and
in the latter case, we say that ϕj is ineffective.

Using these operators, the dynamics of inventory adjustment process can be
represented by

ht =

n∏
j=1

ϕj(ht−1) = ht−1 + (S − s)[ In −An ]mt , (22)

wheremt denotes the vector ofmj obtained by composite applications of ϕ1ϕ2 · · ·ϕn
in t. If the corresponding operator ϕj is effective, then mj = 1; otherwise,
mj = 0.

The next example shows us how the adjustment process is carried out and
how m is constructed by (22).

Example 3.1. Suppose that (S, s) = (3, 0) and the adjacency matrix

A6 =
1

3



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 .



Inventory Adjustment and Aggregate Fluctuations 11

The optimal lot-size is given by (S−s) = 3. Since in-degree is γ =
∑6

i=1 aij = 2/3
, the number of input nodes is given by γ(S − s) = 2. Further, suppose that the
initial inventory configuration is given by h0 = {1, 1, 0, 1, 1, 2}. For simplic-
ity, let us focus on effective operations. Then, the time evolution of inventory
configuration is described as follows:

h0 =
t(1, 1, 0, 1, 1, 2)

h1 = ϕ3h0 =
t(1, 0, 3, 0, 1, 2) ⇔ m1 =

t(0, 0, 1, 0, 0, 0) ̸= 0

h2 = ϕ2ϕ4h1 =
t(0, 3, 1, 3, 0, 2) ⇔ m2 =

t(0, 1, 0, 1, 0, 0) ̸= 0

h3 = ϕ1ϕ5h2 =
t(3, 2, 1, 2, 3, 0) ⇔ m3 =

t(1, 0, 0, 0, 1, 0) ̸= 0

h4 = ϕ6h3 =
t(2, 2, 1, 2, 2, 3) ⇔ m4 =

t(0, 0, 0, 0, 0, 1) ̸= 0

h5 = h4 =
t(2, 2, 1, 2, 2, 3) ⇔ m5 =

t(0, 0, 0, 0, 0, 0) = 0
...

...

In the beginning of the process, firm 3 is unstable so that only ϕ3 is the effective
operator to h0. At t = 1, ϕ3h0 yields another unstable configuration h1 with
two unstable firms in position 2 and 4. At t = 2, both ϕ2 and ϕ4 are effective,
but h2 = ϕ2ϕ4h1 is still unstable. At t = 3, both ϕ1 and ϕ5 are effective, but
h3 = ϕ1ϕ5h1 is still unstable. At t = 4, effective application of ϕ6 gives stable
configuration h4 = ϕ6h3. For t ≥ 5, there is no effective operation, which
means that inventory configurations are invariant h4 = h5 = · · · = h∞ and
m5 = · · · = m∞ = 0.

3.2 Branching Process

In Example 3.1, {mt}∞t=0 can be solved by hand because the number of firms, n,
is very small. In general, however, it is hard to get the exact solution of {mt}∞t=0

when n is very large. Therefore, we substitute to estimate the aggregation of
vector mt to count its exact components.

In particular, we consider the case where the adjustment process starts with
one unstable firm. Now, let

Mt ≡
n∑

j=1

mjt . (23)

denote the sum of all components of vector mt. The sequence {1,M1,M2, · · · }
represents the aggregate quantities of inventory adjustment process. A simple
way to account for the statistics of Mt is through the branching process. The
branching process is constructed in the following manner. Let ξ denote the
number of unstable firms generated by effective operation of ϕ. From Assumption
2.1, each firm has the same in-degree,

∑
i xij = γ(S− s), and then, ξ is identical

for all ϕ. By use of ξ, we can construct the sequence {Mt}∞t=1 as follows. At
t = 0, by definition, the number of unstable firms is one: M0 = 1. Thus, single
production takes place at t = 1 and generates ξ unstable firms. Then, M1 = ξ1.
M1 times of production take place at t = 2, and each single production generates
ξj unstable firms. Then, M2 = ξ1 + · · · + ξM1 . Similarly, M3 = ξ1 + · · · + ξM2

at t = 3. In the same manner, the sequence {Mt}∞t=1 can be obtained from the
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recursive equation:

M0 = 1 and Mt =

Mt−1∑
j=1

ξj . (24)

The next example describes the method to construct the sequence {Mt}∞t=1.

Example 3.2. Consider the same situation as in Example 3.1. Since the number
of input nodes is 2, then ξ ∈ {0, 1, 2}. The branching process representation of
the inventory adjustment process is obtained as follows:

h0 =
t(1, 1, 0, 1, 1, 2) ⇔ M0 = 1

h1 = ϕ3h0 =
t(1, 0, 3, 0, 1, 2) ⇔ M1 = ξ1 = 2

h2 = ϕ2ϕ4h1 =
t(0, 3, 1, 3, 0, 2) ⇔ M2 = ξ1 + ξ2 = 1 + 1 = 2

h3 = ϕ1ϕ5h2 =
t(3, 2, 1, 2, 3, 0) ⇔ M3 = ξ1 + ξ2 = 0 + 1 = 1

h4 = ϕ6h3 =
t(2, 2, 1, 2, 2, 3) ⇔ M4 = ξ1 = 0

h5 = h4 =
t(2, 2, 1, 2, 2, 3) ⇔ M5 = 0

...
...

Whether or not a firm would become unstable entirely depends on the re-
spective firms’ inventory levels. In addition to the division of firms into stable
and unstable ones, we divide the stable firms into two types: critical and not
critical firms. We refer to the stable firm as critical if its inventory is just at the
critical level, that is, sj = hj . Let π be the ratio of critical firms,

π ≡ # of critical firms

n
.

The probability that a certain firm becomes unstable twice in the same adjust-
ment process is of the order of 1/n. If n is sufficiently large, we can eliminate
the possibility that the chain of productions forms loops.

In the large economy, ξ can be regarded as a random variable according to π.
The characteristics of the stochastic process {Mt}∞t=1 depend on the probability
distribution of ξ. Under Assumption 2.1, the number of firms who supply to firm
j is equal to its in-degree,

∑n
i=1 xij = γ(S − s). Since all firms are homogeneous

and ξ are i.i.d., then the probability distribution of ξ is given by the binomial
distribution,

pk = P (ξ = k) =

(
γ(S − s)

k

)
πk(1− π)γ(S−s)−k, (25)

where k ∈ {0, 1, · · · , γ(S − s)} denotes the number of unstable firms generated
by a single production. Using the binomial theorem, the probability generating
function of ξ is given by

f(z) =

∞∑
k=0

pkz
k = (πz + (1− π))γ(S−s) . (26)

The mean of ξ is finite and given by E[ ξ ] = f ′(1) = πγ(S − s).
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Next, let

M = 1 +
∞∑
t=1

Mt (27)

denote the total size of productions taken during the adjustment process. We
consider the probability that the inventory adjustment process terminates after
a finite number of steps, that is, P (M <∞).

Lemma 3.1. If πγ(S − s) ≤ 1, then P (M <∞) = 1.

Proof. See Appendix A.1.

Lemma 3.1 can be considered as the sufficient condition for the existence of
competitive equilibrium satisfying Definition 2.1. If πγ(S − s) ≤ 1, the adjust-
ment process almost surely terminates in finitely many steps. Otherwise, there
is the possibility that the adjustment process never terminates. To be precise,
even in the case πγ(S − s) > 1, the adjustment process may terminate, but this
is not certain. This includes the case that contradicts Definition 2.1 (iv).

The sequence {Mt}∞t=1 is stochastic so thatM gives a probability distribution
on N = {0, 1, 2, · · · }. We define the probability generating function of p(m) =
P (M = m) as follows:

g(z) = E[zM ] =

∞∑
m=0

p(m)zm (28)

The next lemma provides a key role in evaluating statistical properties of M .

Lemma 3.2. For πγ(S− s) ≤ 1, the generating function g(z) of M satisfies the
following equation:

g(z) = zf(g(z)) . (29)

Proof. See Appendix A.2.

By using lemma 3.1, we are able to derive the mean of M .

Lemma 3.3. For πγ(S−s) < 1, the mean of the total size M is finite and given
by

E[M ] =
1

1− πγ(S − s)
. (30)

Proof of Lemma 3.3. Differentiating (29), we obtain g′(z) = f(g(z))+zf ′(g(z))g′(z).
Rearranging and considering z = 1 leads to E[M ] = g′(1) = 1/(1 − f ′(1)) =
1/(1− πγ(S − s)), which has a finite value when πγ(S − s) < 1.

4 Properties of the equilibrium

4.1 Stationary Distribution

In this section, we examine the properties of the equilibrium and the aggregate
fluctuations. First, we investigate the stationary distribution in the long-run
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equilibrium, as it is called a statistical equilibrium. Let π denote the state prob-
ability that the stable firm is at the critical level of inventory. We notice that
there is no unstable firm in the equilibrium, and hence, the probability that the
stable firm is not at the critical level can be denoted by 1− π. In the short-run
equilibrium, the actual output, yn, is obtained under given π. In the long run,
however, the probability distribution (π, 1− π) would vary according to the av-
erage of inventory levels changes. The state probability π would increase when
the average level of inventories decreases. In contrast, π would decrease when
the average level increases.

The average level of inventory is affected by exogenous demands and derived
demands caused by inventory adjustments. One unit of exogenous demand makes
the firm become unstable with probability π. Once a firm becomes unstable and
the inventory adjustment process starts, it is expected that the total amount of
inflows of inventory during the process is (S − s)E[M ] and the total amount of
outflows is γ(S − s)E[M ]. Then, the dynamics of π can be written by

dπ

dt
= −β

[
− 1 + π

{
(S − s)− γ(S − s)

}
E[M ]

]
(31)

where the parameter β represents the speed of adjustment. The statistical equi-
librium (π∗, 1− π∗) corresponds to the case dπ/dt = 0.

Proposition 4.1. If the labor share is positive, γ < 1, then there is a unique
stationary distribution given by

π∗ =
1

S − s
. (32)

Proof of Proposition 4.1. For πγ(S − s) < 1, by combining (30) with (31), we
have

π ⪌ 1

S − s
⇔ dπ

dt
⪋ 0 .

This implies that there is a unique and stable stationary distribution π∗ = 1/(S−
s). In this case, 1− π∗γ(S − s) = 1− γ > 0.

Notice that, if γ = 1, the expected inflows and outflows are equal, and thus,
the external perturbation cannot be absorbed by inventory adjustment process.
Following is a straightforward corollary of Proposition 4.1 and Lemma 3.1.

Corollary 4.1. If the labor share is positive, γ < 1, then there exists an compet-
itive equilibrium satisfying statistical equilibrium almost surely.

Proposition 4.1 also allows us to use the Poisson approximation, that is, when
πγ(S − s) = γ (> 0),

p(k) = P (ξ = k) =
γke−γ

k!
, (k = 0, 1, 2, · · · ). (33)

The Poisson distribution can be derived as a limiting case to the binomial dis-
tribution as the number of trials goes to infinity and the expected number of
successes remains fixed. Therefore, it can be used as an approximation of the



Inventory Adjustment and Aggregate Fluctuations 15

binomial distribution if γ(S − s) is sufficiently large and π is sufficiently small.
Under the Poisson approximation (33), the generation function of ξ is given by

f(z) = E[zξ] =
∞∑
k=0

(
γke−γ

k!

)
zk = e−γ(1−z) . (34)

It yields both E[ξ] = f ′(1) = γ and V ar[ξ] = f ′′(1) + f ′(1)(1− f ′(1)) = γ. The
mean and variance of M can be calculated as below.

Proposition 4.2. For γ < 1, both mean and variance of M are finite and given,
respectively, by

E[M ] =
1

1− γ
and V ar[M ] =

γ

(1− γ)3
.

Proof of Proposition 4.2. From Lemma 3.2 and (34), E[M ] = g′(1) = 1/(1 −
f ′(1)) = 1/(1 − γ). Similarly, V ar[M ] = g′′(1) + g′(1)(1 − g′(1)) = (f ′′(1) +
f ′(1)− f ′(1)2)/(1− f ′(1))3 = γ/(1− γ)3.

4.2 Aggregate Fluctuation

The main purpose of this paper is to show how the aggregate fluctuations be-
have in the statistical equilibrium. In particular, we are interested in testing
whether or not the output gap disappears if there is a large number of firms. We
firstly express the actual output in terms of M . Let m(θ) be the vector that
represent the number of productions corresponding to the demand share vector
θ = (θ1, θ2, · · · , θn). When n is sufficiently large, we can eliminate the possibility
that the chain of productions form loops. Then, it seems natural to assume that
m(θ) = θ1m(e1) + θ2m(e2) + · · · + θnm(en), where ej is the j-th unit vector.
For any given distribution (π, 1 − π) ,

∑n
j=1mj(ei) = πM + (1 − π)(0) is held

in the short-run equilibrium. Then the actual output can be expressed by the
weighted sum of Mi,

yn = (1− γ)(S − s)
n∑

i=1

mi(y
∗θ) = π(1− γ)(S − s)y∗

n∑
i=1

θiMi.

Consequently, the output gap in the short-run equilibrium can be represented as

log

(
yn
y∗

)
= log

(
π(1− γ)(S − s )

n∑
i=1

θiMi

)
. (35)

The following theorem is the first main result of this paper.

Theorem 4.1. We suppose that the labor share is positive, γ < 1, and the econ-
omy is in the statistical equilibrium. For arbitrary demand share, (θ1, θ2, · · · , θn),
a sequence of output gap converges to zero almost surely, that is,

log

(
yn
y∗

)
a.s.−−→ 0 .

Next, we use two lemmas in proving Theorem 4.1.
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Lemma 4.1 (Kolmogorov’s strong law of large numbers). Let {Xk}nk=1 be a se-
quence of independent random variables, with finite expectations. If the variance
of Xk is finite for each k, and

∞∑
k=1

1

k2
V ar[Xk] <∞ , (36)

then

P

(
lim
n→∞

1

n

n∑
i=1

(Xk − E[Xk]) = 0

)
= 1 . (37)

Lemma 4.2 (Limit comparison test). Suppose that we have two series Σkak and
Σkbk with ak, bk ≥ 0 for all k. If limk→∞(ak/bk) = c with 0 < c <∞, then both
series either converge or diverge.

Proof of Theorem 4.1. Because {θi} are given before making a decision, each θi
and Mi are independent. From Proposition 4.2, both mean and variance of θiMi

are finite.
Recall that exp(εi) = nθi, and hence,

n∑
i=1

θiMi =
1

n

n∑
i=1

exp(εi)Mi . (38)

We set ak = exp(εk)
2/k2 > 0 and bk = 1/k2 > 0. Without loss of generality, we

rearrange {εk}nk=1 in descending order, that is, n > ε1 ≥ ε2 ≥ · · · ≥ εn ≥ ε > 0.
Since {exp(εk)2} is decreasing and bounded by its infimum exp(ε)2 > 0, the
sequence {ak/bk} is convergent and the limit is given as follows:

lim
k→∞

ak
bk

= lim
n→∞

exp(εk)
2/k2

1/k2
= lim

k→∞
exp(εk)

2 = exp(ε)2 > 0.

On the other hand, series
∑

k bk has the limit

lim
n→∞

∑
k

bk = lim
n→∞

n∑
k=1

1

k2
< lim

n→∞

(
1 +

∫ n

1

1

x2
dx

)
= 2.

By Lemma 4.2, the series
∑

k ak =
∑

k exp(εk)
2/k2 converges and we have

∞∑
k=1

1

k2
V ar[exp(εi)Mi] =

γ

(1− γ)3

∞∑
k=1

exp(εk)
2

k2
<∞ . (39)

Now, applying Lemma 4.1 to (38), we have

P

(
lim
n→∞

1

n

n∑
i=1

(
exp(εi)Mi − E[exp(εi)Mi]

)
= 0

)
= 1. (40)

Since exp(εi) = nθi and Mi are independent, we have

P

(
lim
n→∞

n∑
i=1

θiMi = E[M ]

)
= 1.
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Using (32) and Proposition 4.2, we conclude that

P

(
lim
n→∞

log

(
yn
y∗

)
= log(1)

)
= 1, (41)

which states that the output gap converges to zero with probability 1.

Theorem 4.1 states that the aggregate fluctuations disappear in the limit
n → ∞. This result is in complete contrast to that of Bak et al. (1993), who
demonstrate that small shocks can create large fluctuations in aggregate level.
The difference between the two arise from the role of labor share. In Bak et al.
(1993), the results rely on the specific structure of network and the production
technology. It is possible to consider their model as a special case of our model
in which the labor share equals to zero, γ = 1. In fact, even in the case γ = 1,
the sufficient condition for the existence of (short-run) competitive equilibrium
is satisfied, so that a competitive equilibrium exists. However, γ = 1 violates
the condition for (long-run) statistical equilibrium stated in Corollary 4.1. Both
mean and variance diverge to infinity. The expected inflows and outflows of
inventory are equal so that the external perturbation caused by demands cannot
be absorbed by the inventory adjustment process. The energy of adjustment
is conserved in the very long time periods, generating the large fluctuations of
aggregate output. The assumption of zero labor share seems to be special. As we
have already seen, for γ < 1, which seems more realistic, aggregate fluctuations
disappear.

4.3 Impulse Response

In order to give a closer look to this point, we consider the stochastic impulse
response to exogenous perturbations. We suppose that the expenditure share for
good i increases by dθi. We notice that the decrease in each θj to compensate
for the increase in θi can be ignored in the large economy. Differentiating (35)
with respect to θi in the statistical equilibrium, we have

d log(yn/y
∗)

dθi
= (1− γ)M ∝M . (42)

The total size of response to the exogenous perturbation is proportional to M .
We refer to this as the stochastic impulse response to the demand shock for goods
i. Therefore, the probability density function of impulse response is proportional
to the probability density function of M ,

p(g) = P

(
d log(yn/y

∗)

dθi
= g

)
∼ P (M = m) (43)

The total size M is a random variable. Then, the next proposition provides the
probability distribution p(m) = P (M = m) for the case γ ≤ 1, which was first
studied by Otter (1949).

Proposition 4.3. We suppose that the labor share is non-negative, γ ≤ 1. The
probability distribution of total size M satisfies Borel distribution,

P (M = m) =
1

m
· (mγ)

m−1

(m− 1)!
e−(mγ) (m = 1, 2, 3, · · · ). (44)
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Proof of Proposition 4.3. Differentiating (29), we have f(g(z)) = g′(z)[1−zf ′(g(z))].
Plugging this into (29) yields

g(z) = zf(g(z)) =

∞∑
m=0

m · p(m)[1− zf ′(g(z))]zm . (45)

Comparing (28) and (45), we obtain 1 = m[1− zf ′(g(z))].
The inverse Z-transform of (28) and the Cauchy integral theorem give p(m)

as follows:

1

2πi

∮
C
g(z)z−m−1dz =

1

2πi

∮
C

∞∑
k=0

p(k)zk−m−1dz

=
∞∑
k=0

p(k)
1

2πi

∮
C
zk−m−1dz = p(m)

where
∮
C denotes the contour integration along a circle surrounding the origin.

Here, we set ω = g(z), and hence,

p(m) =
1

2πi

∮
C

ω

(ω/f(ω))m+1
dz

=
1

2πi

∮
C

f(ω)m

ωm
f(ω)dz

=
1

2πi

∮
C

f(ω)m

ωm
[1− zf ′(ω)]dω

=
1

m
· 1

2πi

∮
C

[f(ω)]m

ωm
dω . (46)

In the case of Poisson distribution of ξ, from (34), we have

f(z)m = e−γm(1−z) =

∞∑
k=0

(
e−(mγ) (mγ)

k

k!

)
zk. (47)

Substituting (47) for (46) and using the Cauchy integral theorem, we obtain

p(m) =
1

m
· 1

2πi

∮
C

∞∑
k=0

(
e−(mγ) (mγ)

k

k!

)
ωk

ωm
dω

=
1

m
· 1

2πi

∞∑
k=0

(
e−(mγ) (mγ)

k

k!

)∮
C
ωk−mdω

=
1

m
· (mγ)

m−1

(m− 1)!
e−(mγ) . (48)

Then, we conclude the proposition.

The probability density function p(g) is proportional to p(m). The following
theorem is the second main result in this paper.

Theorem 4.2. In the competitive equilibrium, the probability density function of
impulse response to the demand shock for goods i is analytically given as

p(g) ∼

g−
3
2 · exp

(
−g
ζ(γ)

)
if γ < 1

g−
3
2 if γ → 1

(49)
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where correlation length is given by

ζ(γ) =
1

γ − 1− ln γ
. (50)

Proof of Theorem 4.2. From Lemma 4.3,

p(g) ∼ 1

g
· (gγ)

g−1

(g − 1)!
e−(gγ) =

(gγ)g−1

g!
e−(gγ) .

By Stirling’s formula n! ∼
√
2πn (n/e)n, we obtain

p(g) ∼
(
γe(1−γ)

)g
√
2πγ

· g−
3
2 =

γ−1

√
2π

· g−
3
2 · e(1−γ+ln γ)g (51)

which satisfies the conclusion of the theorem.

We notice that the correlation length (50) is related to the labor share. The
probability density function (49) is simply divided into two classes. In the case
that the labor share is positive, γ < 1, the correlation length is finite. For g
smaller than ζ(γ), p(g) is well approximated by the power law with exponent
−3/2. However, for large g, the exponential decay dominates the power law de-
cay. The resulting distribution has an exponential tail, with a characteristic scale
given by the correlation length. The impulse response finitely converges. The
probability of having the propagation size larger than ζ(γ) is extremely small.
This means that the effect of idiosyncratic shocks get extinct early, and could not
propagate larger than the scale given by (50). The inventory adjustment process
in no way can propagate the micro-level lumpiness larger than the certain scale.

However, precisely in the case that the labor share is zero, γ = 1, the corre-
lation length (50) diverges to infinity. This means that the critical point of this
economy is the case where the labor share is zero. Then, the exponential part
disappears and the distribution exhibits a power law decay even for sufficiently
large g. The size of the impulse response diverges so that the effect of shocks can-
not be absorbed and conserved in the economic system. Since the characteristic
scale is absent at the critical point, huge propagations are possible. However,
as we have already mentioned, it seems unreasonable to assume that the labor
share is zero.

5 Conclusion

This paper investigates the relationship between lumpy inventory adjustment
and aggregate fluctuations. We present a general equilibrium model composed
of many firms interacting within the input–output network. The main feature of
the model is that each firm follows the (S, s) inventory policy and the production
processes in any firm make use of input from any other firms in the economy.
The (S, s) inventory policy leads the firm to lumpy production pattern and the
interaction between firms can create the chain of productions. It is possible that
fluctuations caused by micro-level lumpiness propagate over the input–output
linkages across different firms within the economy.

The contributions of this paper are as follows. First, we provide a tractable
method to compute the aggregate output in a general-equilibrium framework
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with (S, s) inventory policies. We characterize the competitive equilibrium and
give the closed form solution. Because of the complexity of the lumpy adjust-
ment process, it is hard to determine the exact amount of micro-level quantities.
Then, we employ the branching process to estimate the key statistics of inven-
tory adjustment process. We define the operator that represents the inventory
adjustment caused by single production and describe the chain of productions by
sequentially applying these operators. We use the statistics of this sequence in-
stead of the exact calculation of the adjustment process. Using these estimates,
we derive the stationary distribution in the statistical equilibrium. The com-
petitive equilibrium restricts the short-run equilibrium when the distribution
of inventory level across firms is given. In the long run, the economy reaches
the stationary state in distribution. We prove that the stationary distribution
of this economy can be determined by the (S, s) band under the homogeneity
assumption.

Second, we show that the strong law of large numbers holds in our frame-
work. We prove that when the network structure is symmetric and all firms are
homogeneous, the output gap converges to zero almost surely in the statistical
equilibrium. In other words, if the economy is sufficiently large, the aggregate in-
ventory fluctuations do not solely arise from a combination of micro-level lumpi-
ness and economic interactions among firms. This implies that the micro-level
lumpiness has negligible impact on the macro-level activity in this framework.

We also show that the positive labor share reduces the high fluctuations
in aggregate inventory level and moderates the business cycle. This can be
understood from the viewpoint of impulse response to demand shock. If the labor
share is positive, the probability density function of size of impulse response has
an exponential tail. The inventory adjustment process cannot propagate the
micro-level lumpiness larger than the certain scale. Further, only in the limit
case where the labor share is zero, the exponential part disappears and the
distribution exhibits a power law decay.

From the results of this paper, we can conclude that the criticality hypothesis
does not hold by itself in our framework. In particular, if labor share is posi-
tive, system criticality does not solely arise from a combination of lumpiness,
attributed to non-convexity, and firms’ local interactions, without network or
granular effects. Both network and granular effects are essential sources of large
fluctuations. Nevertheless, this does not imply that non-convexity is a mean-
ingless factor in aggregate fluctuations. If a network structure is asymmetric
or firm sizes are heterogeneous, the effect of lumpiness from non-convexity may
not be negligible in macro-level activities. In such situations, it seems possible
that the amplification mechanism of both network and granular effects can be
strengthened by micro-level lumpiness in the inventory adjustment process.

A Appendix

A.1 Proof of Lemma 3.1

Proof. The inventory adjustment process terminates when Mt = 0. Then, all
the subsequent Mt are also zero. The probability that the adjustment process
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terminate until step T is given by

q(T ) = P

(
T∪
t=1

{Mt = 0}

)
∈ [0, 1] . (52)

Note that {Mt = 0} ⊆ {Mt+1 = 0} for all t = {1, 2, · · · }. The probability that
q(T ) is increasing in T and is bounded above by 1, and then, q = limT→∞ q(T )

exists.
Under Assumption 2.1, we can consider Mt+1 as the sum of independent

copies of Mt. We suppose that M1 = k, and then, we have

E[zMt+1 |M1 = k] = E[zM
(1)
t +M

(2)
t +···M(k)

t ] = (E[zMt ])k (53)

Let ft(z) = E[zMt ] denote the probability generating function of Mt. Plugging
(53) into ft+1(z), we get the following recursion:

ft+1(z) = E[zMt+1 ] =
∞∑
k=0

E[zMt+1 |M1 = k]P (M1 = k)

=

∞∑
k=0

(ft(z))
kpk

= f(ft(z)) (54)

Since ft(0) = P (Mt = 0) = q(t), then q(t+1) = f(q(t)). We obtain q = f(q) by
taking t→ ∞. Therefore, q is the attractive fixed point of the map z 7→ f(z).

From definition, f(1) = 1. In this model, 0 < pk < 1 for all k ≥ 0, and
then, f(0) = p0 > 0. By differentiating f(z) repeatedly, we have f ′(z) > 0 and
f ′′(z) > 0, which implies that f(z) is increasing and strictly convex for z ∈ [0, 1].
If f ′(1) = πγ(S − s) ≤ 1, the map z → f(z) has a unique fixed point z∗ = 1. If
f ′(1) = πγ(S − s) > 1, the map z → f(z) has two fixed points and the smallest
one is attractive: z∗ = f(z∗) with z∗ < 1. These results are summarized by

q =

{
1 if πγ(S − s) ≤ 1

q∗ if πγ(S − s) > 1
(55)

with q∗ < 1.

A.2 Proof of Lemma 3.2

Proof. (See also Harris(1963) Theorem 8.2.) Suppose the number of productions
in t = 1 is given by k, then the total number M can be decomposed into M =
1 +M (1) +M (2) + · · · +M (k). The M (j) are independent and have the same
distribution as M . Thus, we have

E(zM |M1 = k) = E(z1+M(1)+M(2)+···+M(k)
)

= zE(zM )E(zM ) · · ·E(zM )

= zg(z)k. (56)
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From this,

g(z) = E(zM ) =

∞∑
k=0

E(zM |M1 = k)P (M1 = k)

= z
∞∑
k=0

pk[g(z)]
k

= zf(g(z)). (57)
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