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Abstract

This paper proposes a new multiplier process model with dis-
crete inventory adjustment and input-output structure. The (S, s)
inventory policy and a regular network are employed. We define
the multiplier process as a branching and derive a statistics of the
multiplier in the statistical steady state. We show that convergence
and termination of the multiplier process are different matters in
a statistical model. We prove that the sufficient condition for con-
vergence of expected multiplier is the same as the Brauer–Solow
condition, which is a sufficient condition for a linear input-output
model. We also prove that the necessary and sufficient condition
for termination of a multiplier process is weaker than the Hawkins–
Simon condition, which is a necessary and sufficient condition for
the linear model. We examine the relation between the rate of re-
turn and the multiplier. We prove that the multiplier is finite and
its probability distribution function decays exponentially if the rate
of return is sufficiently large, whereas the multiplier asymptotically
diverges and the probability distribution function is asymptotically
a power law if the rate of return is close to zero. This indicates the
relation between low profit rate and high output volatility.

JEL Classification: C60, E32
Keywords: Multiplier, (S, s) Economy, Inventory Dynamics, Input-
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1 Introduction

Inventory adjustment has been assumed to play an important role in multiplier
processes ever since the concept was introduced by Richard Kahn and John May-
nard Keynes in the 1930s. During a multiplier process, the aggregate demand
is higher than the aggregate output and the total inventory in the economy
continues to fall. To prevent the total inventory from falling to an undesirably
low level, the firm must produce some extra output and restore its inventory
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levels during the multiplier process. The firm’s decision on how and when to
do so would affect the economy’s reaction to disequilibrium and its propagation
mechanism. There has been considerable research on linear and continuous ad-
justment models. Nevertheless, when it comes to the discrete adjustment model,
it is still unclear as to how the inventory adjustment process moves the economy
to a new equilibrium after the multiplier process.

In inventory theory, the (S, s) policy is a well-known adjustment effective in
situations involving non-convex adjustment costs. Arrow, Harris, and Marschak
(1951) introduced the (S, s) form of inventory policy, while a general proof of
the optimality of these policies was provided by Scarf (1960). We describe the
characteristics of the (S, s) policy below. The firm establishes a lower stock point
s and an upper stock point S. If the inventory level is above the lower point, the
firm satisfies the requirement of inventory and no production takes place. If the
inventory level falls to or below the point s, the firm produces a certain amount
of goods in order to restore the inventory level to the upper point S.

This class of economies, called the (S, s) economy, has attracted a large num-
ber of researchers concentrating on its aggregate consequences. For a study of
macroeconomic impact, we need to aggregate the individual policy. However,
this is a difficult task because of the nonlinearity and discreteness of the (S, s)
policy due to its non-convex environment. Caplin (1985) considered the aggre-
gate implication of exogenous (S, s) inventory policies across firms that follow
a time-invariant policy. Using a Markov process model, he concluded that in
the long run, the inventory levels of individual retailers are mutually indepen-
dent regardless of correlation in sales. Caballero and Engle (1991) provide a
framework for analysis of the aggregate dynamics of the (S, s) economy and give
the conditions under which the (S, s) economy achieves a steady state; here, the
steady state is defined as a condition in which the distribution of inventories is
invariant to the distribution of demand.

Bak, Chen, Scheinkman, and Woodford (1993), hereafter BCSW, built a pro-
duction and inventory economy model with large endogenous fluctuations. They
demonstrated that random shocks to an economy do not average out in the ag-
gregate but might produce significant aggregate fluctuations. They incorporate
local interactions through production networks into the (S, s) economy; these
are absent in Caplin (1985) and Caballero and Engle (1991). BCSW used the
sandpile model (Bak et al. (1989)) and considered a simple square economy.
They assumed that firms connect through a hierarchical network involving some
amount of inventory. This mechanism demonstrated that random shocks to the
economy do not average out in the aggregate but might produce significant fluc-
tuations. Although the BCSW model is very attractive, it depended heavily on
a particular kind of production network, that is, the hierarchy of order flow.

In this paper, we generalize the model and study a more general pattern
of connections between firms and the multiplier process with the (S, s) discrete
adjustment economic policy. The rest of the paper is organized as follows. The
next section presents the model we use and defines the multiplier process, in-
cluding the discrete inventory adjustment process. In section 3, we characterize
the statistical property of the model. Section 4 proves four key theorems, and
section 5 concludes the paper.
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2 The model

2.1 General framework of the (S, s) economy

In an economy consisting of a large number of firms, assume thatN = {1, 2, · · · , n, · · · , N}
is a set of firms. Each firm produces differentiated goods indexed by i ∈ N .
Further, integer xi represents the number of inventories held by firm i, and a
configuration of inventory holdings x′ = (x1, · · · , xN ) is a vector of non-negative
integers.

Each firm i sets a pair of integers (Si, si) with Si > si + 1 so as to minimize
costs, where Si is the upper target of inventory level and si, the lower point. Two
positive integers, (Si, si), specify the inventory policy of firm i. If the inventory
level falls to si or below, that is, xi ≤ si, we say that firm i is unstable with
regard to inventory. Similarly, if si < xi, firm i is stable. A stable configuration
indicates stability at all firms. We denote the set of all stable configurations by
S; that is,

S = {(x1, · · · , xn) ∈ Zn
+ | Si ≥ xi > si, ∀i ∈ N}. (1)

We further assume that (Si, si) is time-invariant for all firms, so that stable set S
is also time-invariant. All firms monitor their inventory levels in order to avoid
costly stock-outs each period and maintain the stability of their inventory levels.
When a firm becomes unstable, it needs to increase its production immediately
and restore its target level.

Similarly, (Si, si) determines its production lot size, ∆i = Si − si > 1, which
indicates the amount firm i can produce in a period. Whether or not a firm
produces goods depends on the level of inventory the firm has at the beginning
of the period and the order for that period. On receiving an order, the firm
satisfies its inventory position. If the firm is stable after execution of the order,
no need exists for further production. If firm i becomes unstable following the
order, it must produce ∆i = Si − si units of goods in that period.

In this economy, firms are interdependent in terms of input. Every firm needs
to procure certain units of output from other firms. For its production, firm
j needs (∆1j , · · · ,∆ij , · · · ,∆Nj) of goods produced by other firms (notice that
these inputs include firm j’s own products, ∆jj). One production by firm j means
that its inventory level increases by ∆j = Si−si, while the inventory levels of all
the associated firms decrease by ∆ij . Besides the assumption of production lot
size ∆j , we assume that the vectors of inputs (∆1j , · · · ,∆ij , · · · ,∆Nj), ∀j ∈ N
are time-invariant.

We define the non-negative integer mi as the amount of production taking
place at firm i during the given period and note that vectorm′ = (m1, · · · ,mN ) ∈
ZN
+ . Let integer yi ≥ 0 denote the order as an exogenous demand on firm i. Fur-

thermore, let xi and x′i denote respectively firm i’s ex-ante and ex-post inventory
levels. The following equations represent the inventory dynamics of the economy:

x′i = xi − yi +mi∆i −
∑
j∈N

mj∆ij , ∀i ∈ N . (2)

The term mi∆i represents the total amount of products firm i produces during
the given period. This term has a positive role in inventory accumulation. Term
mj∆ij represents the total amount of inputs moved from i to j for the production
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of firm j. This term has a negative, or at least non-positive, role in inventory
accumulation.

We consider the equations of inventory dynamics as the equation system
representing the structure of the (S, s) economy.


m1∆1

m2∆2
...

mN∆N

 =


∆11 ∆12 · · · ∆1N

∆21 ∆22 · · · ∆2N
...

...
. . .

...
∆N1 ∆N2 · · · ∆NN




m1

m2
...

mN

+


y1
y2
...
yn

+


x′1 − x1
x′2 − x2

...
x′N − xN

 .

Matrix D = (∆ij)i,j∈N is an N × N adjacency matrix of a weighted graph
representing the input network between firms.

Now, the model has been fully described. Following Caplin (1985), Definition
2.1 summarizes the components of the model below.

Definition 2.1. The (S, s) economy consists of

• a set of firms: N = {1, 2, · · · , n, · · · , N}

• N pairs of (S, s) policies:
{
∆i

}
i∈N with ∆i = Si − si > 1

• an N × N adjacency matrix of a weighted graph representing the input
network of the economy: D = (∆ij)i,j∈N

• an exogenous demand vector: y = (y1, · · · , yN ) ∈ ZN
+

• transition equations of inventory level given by (2).

We define the input coefficient as

aij =
∆ij

∆i
∈ Q+ , (3)

and the input coefficient matrix as A = (aij)i,j∈N . All ∆i are positive integers
and all ∆ij are non-negative; therefore, input coefficients aij are non-negative
rational numbers. Since both ∆i and ∆ij are time-invariant, the input coefficients
aij are constant. From aij , we obtain

1− a11 −a12 · · · −a1N
−a21 1− a22 · · · −a2N
...

...
. . .

...
−aN1 −aN2 · · · 1− aNN




m1∆1

m2∆2
...

mN∆N

 =


y1
y2
...
yN

+


x′1 − x1
x′2 − x2

...
x′N − xN

 ,

or its matrix form representation

∆[I −A]m = y + x′ − x , (4)

where A, ∆, and y are the input coefficient matrix, the vector of production lot
size, and an exogenous demand vector, respectively.

The problem of the (S, s) economy is to determine m (and hence x′) for
given ∆, A, and x when the exogenous demand takes a certain vector y. In
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the linear model, as with the Leontief input-output model, we can obtain the
solution from the inverse matrix [I − A]−1 = I + A + A2 + · · · , which is called
the matrix multiplier. However, the adjustment process of the (S, s) economy is
non-linear and composed of many (Si, si) policies, which are also non-linear ad-
justment policies. In addition, individual non-linearity can be amplified through
interaction with the input network.

2.2 Multiplier process of the (S, s) economy

To determine m in such a non-linear model, we describe how m can be con-
structed through the inventory adjustment process. The dynamics is defined as
follows. At first, the initial state of inventory holding for each firm would ran-
domly take a configuration x′ = (x1, · · · , xN ) from the stable set S. Then, we
have one unit of exogenous demand occurring at a time to a randomly chosen
firm i. This decreases i’s inventory level by one. If xi → xi − 1 < si, x becomes
unstable at firm i and the inventory adjustment process starts, but otherwise x
will be stable and the next perturbation occurs.

The inventory adjustment process starts with one single production; we call
this step t = 0 of the process. Let i0 be the index of this firm, which must update
mi0 = 0 → mi0 = 1. At the same time, i0 needs (∆i01, · · · ,∆i0N ) of input and
derived demand occurs for other firms. This derived demand decreases ∆ij units
of inventory of each firm and may render one or more of the firms unstable. Let
{i1} be the list of unstable firms at t = 1. Firms in {i1} have to produce and
increase their inventories within step t = 1 and update mi1 → mi1+1, ∀i1 ∈ {i1}.
Similarly, the production in step t− 1 may lead to further production in step t.

Let Z
(i)
t = mi,t −mi,t−1 ∈ {0, 1} be the update score of firm i at step t, which

is a random variable in a large economy, and let Zt = (Z
(1)
t , · · · , Z(N)

t ) be the
vector of scores. Furthermore, let mt be the vector of the total score until t, mt

is generated by random vector Zt.

Definition 2.2. A multiplier process in the (S, s) economy is defined as
the stochastic process {mt}∞t=0 generated by

mt = mt−1 +Zt (5)

Unfortunately, we find it very difficult to explicitly solve (5) because the (S, s)
economy described here is rather general and contains several heterogeneities and
irregularities. Inventory policies and input networks are different from firm to
firm. Each firm’s updating therefore evolves different (Si, si) policies and so

{Z(i)
t } are not identically distributed. Furthermore, the timing of updating is

dependent on other firms and so {Z(i)
t } is not independent.

2.3 The n-regular (S, s) economy

We introduce regularities into the economy to make the model more tractable
from this point onward.

Assumption 2.1. We assume two regularities in the (S, s) economy.

1. Regularity of (S, s) policy: ∆i = ∆ = S − s > 1, ∀i ∈ N
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2. Regularity of input matrix:

(a) ∆ij ∈ {1, 0}
(b)

∑
j ∆ij = n, ∀i ∈ N and 0 < n << N .

Assumption 2.1 (1) is about the regularity of (S, s) policy. We assume that
all firms have equal (identical) (S, s) policies. This assumption means that every
firm has the same lot size and produces the same amount in a single production.

Assumptions 2.1 (2.a) and (2.b) are about the regularity of inputs. We
assume that if there is an input relation from i to j, then element ∆ij = 1,
otherwise ∆ij = 0. We also assume that the number of inputs the firm needs in
a single production of ∆ is equal (identical) for all firms. For a given firm, the
list of firms from which it gets inputs is fixed. These two assumptions on input
regularity suggest that we restrict the graph to a regular graph representing an
input network between firms under assumption 2.1. When the number of inputs
is equal to n, the graph is referred to as an n-regular graph.

Now, under assumption 2.1, we can summarize an n-regular (S, s) economy
by definition 2.3.

Definition 2.3. An n-regular (S, s) economy consists of

• a set of firms: N = {1, 2, · · · , n, · · · , N}

• identical (S, s) policies for all firms, given by assumption 2.1 (1)

• an N × N adjacency matrix of n-regular graph representing the input
network of economy: D = (∆ij)i,j∈N , given by assumptions 2.1 (2.a) and
(2.b)

• an exogenous demand vector: y = (y1, · · · , yN ) ∈ ZN
+

• transition equations of inventory level given by (2).

From the perspective of analytic solvability, we benefit from these assump-
tions. The input coefficients of the n-regular (S, s) economy become identical

aij =

{
a
(
= 1

∆

)
if firm j needs input from firm i

0 otherwize,
. (6)

and ∑
j

aij = na, ∀i ∈ N . (7)

Considering the regularities of ∆, we define the total number of productions in
step t, Zt and that until step t, Mt, as

Zt ≡
∑
i∈N

Z
(i)
t (8)

Mt ≡
∑
i∈N

mi (9)
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Figure 1: Description of inventory adjustment process in a 2-regular
(S, s) economy. Arrows −→ represent the direction of inputs. Points
• represent firms with stock-out and production in process, and points
◦ represent firms with sufficient inventories to terminate the chain of
production.

Figure 2: Multiplier process in a 2-regular (S, s) economy. Z0 ≡ 1, Z1 =
2, Z2 = 3, Z3 = 1, Z4 = 1, Z5 = 0. M5 = Z0 + Z1 + Z2 + Z4 + Z5 = 8.
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With the regularity of number of inputs, n, the random variable Zt can be
represented as follows. Let K be the number of firms that start production of
new inventories from the derived demand of a single firm. Whether a firm starts
production depends on its inventory level. More precisely, K is decided by the
ratio of firms whose inventory level becomes xi → xi − 1 < si by one order. Let
π be the ratio of firms whose inventory level is equal to 1 per N .

π ≡ # of firms whose inventory level is equal to 1

N
. (10)

The probability that a firm that produced once will produce again in the next
steps of the same process is of the order of 1/N . If N is sufficiently large, we can
eliminate the possibility that the chain of production forms loops. A binomial
distribution gives the probability of k times of production triggered by a single
production,

pk = P (K = k) =

(
n
k

)
πk(1− π)n−k, (k = 0, 1, · · ·n) . (11)

From this nature of K, we can construct the stochastic process {Zt}∞t=0 as
follows. We start with Z0 = 1. Z1 is the number of firms that produced in step
t = 1. Obviously, Z1 = K. Since Zt is the number of firms that produced in step
t, Zt is obtained from the recursive equation

Zt =

Zt−1∑
j=1

Kj , (12)

where Ki corresponds to the number of firms that produced in step t from the
derived demand of firm i, which produced in step (t− 1).

From this recursion of Zt, we define the multiplier process in the n-regular
(S, s) economy as follows:

Definition 2.4. A multiplier process in the n-regular (S, s) economy is
defined as a stochastic process {Mt}∞t=0, that is,

Mt = Mt−1 + Zt (13)

3 Stochastic properties of multiplier process

3.1 Probability generating function

Now, let ϕ be the probability generating function of K as

ϕ(θ) = ϕK(θ) = E(θK) =

∞∑
k=0

pkθ
k , |θ| ≤ 1. (14)

We also define the probability generating function of Zt as

ϕZt(θ) = E(θZt) =

∞∑
k=0

P (Zt = k)θk , |θ| ≤ 1. (15)
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Since K1, · · · ,Kk are independent and ϕ(θ) = ϕZ1(θ) = ϕK(θ) because Z1 = K,
we have

ϕZt(θ) = E(θZt)

=
∞∑
k=0

E
[
θZt | Zt−1 = k

]
· P (Zt−1 = k)

=
∞∑
k=0

E
[
θK1+···+Kk

]
· P (Zt−1 = k)

=

∞∑
k=0

E(θK)k · P (Zt−1 = k)

=

∞∑
k=0

ϕ(θ)kP (Zt−1 = k) . (16)

From the definition of ϕ,

ϕZt−1(ϕ(θ)) =
∞∑
k=0

ϕ(θ)kP (Zt−1 = k) , (17)

we have

ϕZt(θ) = ϕZt−1(ϕ(θ)) . (18)

Thus,

ϕZt(θ) = ϕt(θ) (19)

3.2 Expected values

Following the binomial theorem, the generating function becomes

ϕ(θ) =

n∑
k=0

(
n
k

)
πk(1− π)n−kθk = (πθ + (1− π))n . (20)

Thus, we have the following lemmas.

Lemma 3.1. E(K) = nπ < ∞.

Proof. By differentiating (20), we have

ϕ′(θ) =

n∑
k=0

kpkθ
k−1 = n[πθ + (1− π)]n−1 · π

Taking the limit z → 1 − 0, and recalling that 0 < n ≤ ∆ and 0 ≤ π ≤ 1, we
have

E(K) = lim
θ→1−0

ϕ′(θ) = nπ < ∞.

Lemma 3.2. E(Zt) = (nπ)t < ∞.
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Proof. Differentiating (18), we have

ϕ′
Zt
(θ) = ϕ′

Zt−1
(ϕ(θ)) · ϕ′(θ). (21)

From limit z → 1− 0 and lemma 3.1, we have

E(Zt) = lim
θ→1−0

ϕ′
Zt
(θ)

= lim
θ→1−0

ϕ′
Zt−1

(ϕ(θ)) · lim
θ→1−0

ϕ′(θ)

= E(Zt−1) ·E(K)

= E(K)t

= (nπ)t .

The expected number of productions conditioned to the value of previous
productions, E(Zt+1 | Zt = zt), can be obtained, since Zt = zt is fixed, from the
expectation of Zt+1 =

∑zt
i=1Ki; that is,

E(Zt+1 | Zt = zt) = E

(
zt∑
i=1

Ki

)
= zt ·E(K) . (22)

4 Multiplier in the statistical equilibrium

4.1 Definition of stochastic multiplier

Before discussing the stochastic multiplier, let us define the statistical steady
state of the economy, the so-called statistical equilibrium. Following repeated
perturbations of exogenous demand, the economy reaches a statistical equilib-
rium state, when the aggregate inflow of inventories into the economy must be
equal to the aggregate outflow of inventories from the economy. Let Xin and
Xout denote the total inflow and outflow of inventories, respectively, following
the multiplier process triggered by one exogenous demand; E[Xin] and E[Xout]
are respectively the expected values.

Definition 4.1 (statistical equilibrium). The statistical equilibrium of the n-
regular (S, s) economy is defined as a state in which the expected aggregate inflow
equals the expected aggregate outflow; that is,

E[Xin] = E[Xout]. (23)

Statistical equilibrium can be characterized by a single parameter.

Proposition 4.1. In statistical equilibrium, π = a.

Proof. The inflow at step t can be given by Zt∆. From lemma 3.2, the expected
value of Xin is

E(Xin) =
∞∑
t=0

E(Zt)∆ = ∆
∞∑
t=0

(nπ)t . (24)
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Note that the outflow consists of two parts. An exogenous demand of 1/π is
required before an adjustment process starts. Once the process starts, the out-
flow at step t can be expressed by Zt−1 · n. Then, the expected number of Xout

becomes

E(Xout) =
1

π
+

∞∑
t=1

E(Zt−1)n =
1

π
+

∞∑
t=1

(nπ)t−1n =
1

π

∞∑
t=0

(nπ)t . (25)

In the equilibrium E(Xin) = E(Xout), we get

π =
1

∆
= a (26)

Assume that M denotes the limit of multiplier process {Mt},

M = lim
t→∞

Mt . (27)

Definition 4.2 (stochastic multiplier). In statistical equilibrium, a stochastic
multiplier of the n-regular (S, s) economy is defined as the expectation of the limit
of stochastic process {Mt} with probability π = a; that is,

E(M) = E
(
lim
t→∞

Mt

)
with π = a . (28)

4.2 Convergence of stochastic multiplier

Theorem 4.1 (convergence). In statistical equilibrium, the multiplier process
of the n-regular (S, s) economy converges and can be expressed exactly as

E(M) =
1

1− na
= 1 + na+ (na)2 + (na)3 + · · · , (29)

if the Brauer–Solow sufficient condition holds, that is,

N∑
j=1

aij < 1, ∀i ∈ N . (30)

Proof. For the interchange of limits and expectations and the linearity of expec-
tations, the RHS of (28) can be

E
(
lim
t→∞

Mt

)
= lim

t→∞
E(Mt)

= lim
t→∞

E

[
t∑

τ=0

Zτ

]

= lim
t→∞

t∑
τ=0

E(Zτ )

= 1 +E(Z1) +E(Z2) +E(Z3) · · ·
= 1 + na+ (na)2 + (na)3 + · · ·

=
1

1− na
(|na| < 1) .

If (30) holds, 1 >
∑N

i=1 aij = na > 0 for all i ∈ N . This satisfies the
convergence radius of (29).
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4.3 Termination of multiplier process

Next, we examine the probability that the multiplier process terminates in finite
steps, or, in another words, the multiplier process contains finite mass; that is,

P (M < ∞) = P

(
lim
t→∞

t∑
τ=0

Zτ < ∞

)
= 1 . (31)

Note that this problem is different from the convergence of multiplier, which we
proved in Theorem 4.1. Theorem 4.1 gives the condition for convergence of the
“expectation value” of the multiplier. The following theorem gives the condition
for convergence of the multiplier “process” itself.

Let ωt be the probability that the multiplier process terminates by the t-th
step,

ωt = P (Zt = 0) . (32)

Further, let ω be the limit, if one exists,

lim
t→∞

ωt = ω. (33)

If the multiplier process terminates, ω = 1, otherwise ω < 1.

Theorem 4.2 (termination probability). In statistical equilibrium, the multiplier
process of the n-regular (S, s) economy terminates in finite steps if and only if
na ≤ 1; that is,

ω = 1 ⇐⇒ na ≤ 1. (34)

Proof. Since ϕZt(θ) = ϕzt−1(ϕ(θ)) = ϕt(θ) = ϕ(ϕZt−1(θ)) from (18) and ϕZt(1) =
P (Zt = 0) = ωt, we have

ωt = ϕ(ωt−1). (35)

For the initial value ω0 = 0, {ωt}tt=0 satisfies

ω1 = ϕ(ω0) = ϕ(0) = p0 ≤ ϕ(1) = 1 (36)

ω2 = ϕ(ω1) ≤ ϕ(1) = 1 (37)

...
... (38)

ωt = ϕ(ωt−1) ≤ ϕ(1) = 1. (39)

Therefore, {wt}∞t=0 is a bounded monotonic sequence and converges to the limit

lim
t→∞

ωt = ω ≤ 1 . (40)

In the limit, ω is a fixed point of ϕ in [0, 1]; that is, ω = ϕ(ω).
We assume that p0 > 0 to avoid a trivial case. Map ϕ is continuous for

z ∈ [0, 1]. Further, ϕ is non-decreasing and convex because

ϕ′(θ) =

∞∑
k=1

kpkθ
k−1 ≥ 0 , (41)

ϕ′′(θ) =

∞∑
k=2

k(k − 1)pkθ
k−2 ≥ 0 . (42)
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It follows that ω = ϕ(ω) has either one or two fixed points in [0, 1]. Obviously,
ω = 1 is one of the fixed points,

ϕ(1) =
∞∑
k=0

pk = 1. (43)

In statistical equilibrium, no other fixed point exists in [0, 1] if ϕ′(1) = na ≤ 1.

Note that this condition for termination of the multiplier process does not
satisfy the Brauer–Solow sufficient conditions as well as the Hawkins–Simon con-
ditions in a linear model. We consider a random case where the distribution
shows a strictly positive variance. If na = 1, the probability is that the multi-
plier process terminates in finite steps. Nevertheless, the stochastic multiplier
diverges in this case.

E (M) = E

( ∞∑
t=0

Zt

)
=

∞∑
t=0

1t = ∞. (44)

Technically, if the variance is zero, we would have limt→∞ P (Zt = 0) = 0 in this
case. However, this fact indicates that the termination of the multiplier process
and convergence of the multiplier are totally different matters. The condition for
convergence in the (S, s) economy model could be weaker than that in a linear
model.

4.4 Criticality and rate of return

Let qi be the price of goods i. From the homogeneity of aij , qi = qj , ∀i, j ∈ N ,
we define the uniform rate of return, r, as

r =
qj −

∑N
i=1 qiaij∑N

i=1 qiaij
=

1− na

na
. (45)

Theorem 4.3 (asymptotic divergence). The stochastic multiplier of the n-
regular (S, s) economy is asymptotically divergent when the uniform rate of return
is very close, but not equal, to 0.

Proof. From (45) na = 1/(1 + r), we have

E(M) =
1

1− 1

(1 + r)

=
1

r
+ 1 . (46)

For the limit r → 0,

lim
r→0

E(M) = lim
r→0

{
1

r
+ 1

}
= ∞ . (47)
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Figure 3: Asymptotic divergence of the n-regular (S, s) economy.

This result tells us that r = 0, that is na = 1, is the critical point of this
economy. This corresponds precisely to Bak et al.’s (1993) case, which says
that the system evolves to the state of self-organized criticality wherein the
triggered chain reaction is much larger than the original shock and any size of
the chain reaction can occur. Their model displays power-law fluctuation and
E(M) diverges to infinity. However, in the usual case where r > 0, that is,
na < 1, the economy is said to be subcritical and E(M) is a finite size.

Now, we examine the fluctuation of M . The multiplier process is represented
as the branching process of a tree, which is a connected graph with no loops. We
take advantage of this nature and calculate the size distribution of the stochastic
multiplier.

If M = m, it contains m production nodes in the tree constructing the
multiplier process, depicted as • in Figure 2. The tree has m × n branches,
and m − 1 out of m × n are triggered to produce while m × n − (m − 1) are
not triggered. With regard to Figure 2, where n = 2, the tree has 8 × 2 = 16
branches and m × n − (m − 1) = 16 − 7 = 9, the probability of m size of tree
can be expressed by πm(1−π)m×n−(m−1), where π is the ratio of inventory level
equal to one.

In general, the size distribution of the stochastic multiplier, M , is given by

P (M = m) =
1

m+ 1

(
m× n
m

)
πm−1(1− π)m×n−(m−1) with m = 1, 2, 3, · · ·(48)

In order to count the number of trees with m nodes, for the case n = 2, the
Catalan number Cm is well known,

Cm =
1

m+ 1

(
2m
m

)
=

(2m)!

m! (m+ 1)!
. (49)

For n = 2, with this number, we give the size distribution of the stochastic
multiplier, M , by

P (M = m) = Cmπm−1(1− π)m+1 with m = 1, 2, 3, · · · (50)
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Theorem 4.4 (size distribution). In statistical equilibrium, the distribution func-
tion of multiplier M is analytically given as

P (M = m) ∼ 1− a

a
√
π

·m− 3
2 · exp

(
− m

ξ(a)

)
with m = 1, 2, 3, · · · , (51)

where the correlation length ξ(a) is

ξ(a) ∼
(

1

1− 2a

)2

. (52)

Proof. From Stirling’s formula, where m is large enough to replace m+ 1 ∼ m,
the Catalan number becomes

Cm =
1

m+ 1

(
2m
m

)
=

1

m+ 1

(2m)!

m!(m+ 1)!
∼ 1

m+ 1

1√
πm

(2m)2m

m2m
(53)

∼ 1

m+ 1

4m√
πm

∼ 4m√
π
·m− 3

2 . (54)

In statistical equilibrium, if π = a, then we have

P (M = m) ∼ 1− a

a
√
π

·m− 3
2 · [4a(1− a)]m . (55)

Because a < 1/2, a(1 − a) is less than 1/4, and so [4a(1 − a)]m decreases.
Therefore, we have [4a(1− a)]m = em ln[4a(1−a)].

From Theorem 4.3, the critical point of this economy is ac = 1/n = 1/2.
Introducing a deviation from the critical point, D ≡ a− ac = a− 1/2, and so we
can write

a(1− a) =
1

4
−D2.

We conclude by using the Taylor expansion and plugging the result into (55).

Figure 4 are graphs of (51), the distribution mass function of multiplier sizes.
The (S, s) economy evolves or self-organizes into a statistically stationary state,
where the distribution of the multiplier sizes can be given by

P (M = m) ∼


m− 3

2 · exp
(
− m

ξ(a)

)
if a < 1

2

m− 3
2 if a → 1

2

. (56)

If m is smaller than ξ(a), the probability mass function is well approximated
by power law with exponent 3/2. However, for a large m, the exponential decay
dominates. In the critical case, a = 1/n (= 1/2), the exponential disappears and
the distribution is a pure power law.

Parameter a is an input coefficient that is so regular that it can be interpreted
as a function of the uniform rate of return r, as seen in Theorem 4.3. If a <
1/n (= 1/2), then r > 0 and (1 − na) > 0; that is, the profit is positive and
the system is subcritical. An external perturbation of demand is absorbed by a
certain profit rate. That is, energy is not conserved in this case. Therefore, the
correlation length ξ in finite perturbation cannot propagate a long distance.

IF a = 1/n (= 1/2) then r = 0, that is, zero-profit and critical point. In
this case, external perturbation cannot be absorbed, energy is conserved, and
the system is critical since the distribution function (56) shows a power-law
distribution.
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Figure 4: Size probability mass function in n-regular (S, s) economy in
the case n = 2.

5 Conclusions

In this paper, we proposed a general quantity adjustment behavior and input-
output structure model. We employ the (S, s) inventory policy as an inventory
adjustment behavior with a non-linear nature. This nature plays an important
role in aggregate dynamics. A threshold adjustment allows each firm to store
the adjustment energy and productions have lumpy perturbations. Once a pro-
duction takes place, the firm releases a large amount of energy that propagates
through the economy in a multiplier process.

After defining the general framework, we restrict the input-network structure
to a regular graph. We define the multiplier process as a branching and derive
the expectation value of the multiplier in the statistical steady state. We give
key theorems in Section 4; one is the sufficient condition for the convergence of
the multiplier in terms of expectations. This condition is similar to the well-
known Brauer–Solow condition,

∑
aij < 1; it takes the form na < 1 in our

model. Another is the necessary and sufficient condition for termination of the
multiplier process. We prove that the condition is na ≤ 1. However, for the case
of na = 1 in particular, this violates Solow’s condition as well as the Hawkins–
Simon condition. We conclude that the necessary and sufficient condition for
termination of the multiplier process is weaker than that in the linear model.

We also prove that the multiplier is finite and that its probability distribution
function decays exponentially if the rate of return is positive. Rate of return is
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associated with the input coefficient a in our model; positive returns mean that
na < 1. On the other hand, if the rate of return has a zero limit ( na = 1),
the multiplier asymptotically diverges and the probability distribution function
is asymptotically a power law. This means that a positive rate of return holds
down the high fluctuation of output and moderate business cycles.
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